
1

TITLE SLIDE: HEADLINE

Presenter

name
Title, Red Hat
Date

JSR-299: Contexts and

Dependency Injection for Java EE

Dan Allen
Senior Software Engineer, RedHat
August 19, 2009

2

What JSR-299 provides

● A powerful set of new services for Java EE components
● Life-cycle management of stateful components bound to

well-defined contexts
● A type-safe approach to dependency injection
● Bean names to support Unified EL integration

● A web conversation context
● Interceptors decoupled from bean class
● An event notification model
● A complete SPI that allows portable extensions to

integrate cleanly with the Java EE environment

3

The big picture

● Fills a major hole in the
Java EE platform

● A catalyst for emerging
Java EE specs

● Excels at solving stated
goal

4

Stated goal

Web tier
(JSF)

Transactional tier
(EJB)

5

Going beyond Seam

● JSF-EJB integration problem still needed to be solved
● Solve at platform level

● Get an EG involved
● Buy-in from broader Java EE community
● Formulate a better, more robust design

6

Your bean is my bean

● Everyone trying to solve the same problem
● JSF, EJB, CDI (JSR-299), Seam, Spring, Guice, etc.

● Need a “unified bean definition”

● Can build from there

7

Managed bean

● Common bean definition

● Life cycle of instance
managed by container

● Basic set of services
● Resource injection
● Life-cycle callbacks
● Interceptors

● Foundation on which
other specs can build

Managed bean

JSF EJB CDI

8

Why injection?

● Injection is the weakest aspect of Java EE

● Existing annotations pertain to specific components
● @EJB

● @PersistenceContext / @PersistenceUnit

● @Resource (e.g., DataSource, UserTransaction)

● Third-party solutions rely on name-based injection
● Not type-safe
● Fragile
● Requires special tooling to validate

9

Leverage and extend Java’s type system

● JSR-299 introduces creative use of annotations

● Annotations considered part of type

● Comprehensive generics support

● Why augment type?
● Can’t always rely on class extension (e.g., primitives)
● Avoid creating hard dependency between client and

implementation
● Don’t rely on weak association of field => bean name
● Validation can be done at startup

10

JSR-299 theme

Loose coupling...

...with strong typing

@Inject
@Observes

@InterceptorBinding

@Qualifier

Event<Order>

@Produces @WishList
List<Product> getWishList()

@UserDatabase EntityManager

11

Loose coupling

● Decouple server and client
● Using well-defined types and “qualifiers”
● Allows server implementation to vary

● Decouple life cycle of collaborating components
● Automatic contextual life cycle management
● Stateful components interact like services

● Decouple orthogonal concerns (AOP)
● Interceptors
● Decorators

● Decouple message producer from message consumer
● Events

12

StrongStrong typing

● Eliminate reliance on string-based names

● Compiler can detect typing errors
● No special authoring tools required for code completion
● Casting virtually eliminated

● Semantic code errors detected at application startup
● Tooling can detect ambiguous dependencies

13

What can be injected?

● Defined by the specification
● Almost any plain Java class (managed beans)
● EJB session beans
● Objects returned by producer methods or fields
● Java EE resources (e.g., Datasource, UserTransaction)
● Persistence units and persistence contexts
● Web service references
● Remote EJB references

● Open book
● SPI allows third-party frameworks to introduce

additional injectable objects

14

CDI bean

● Set of bean types (non-empty)

● Set of qualifiers (non-empty)

● Scope

● Bean EL name (optional)

● Set of interceptor bindings

● An implementation

15

Bean services with CDI

● @ManagedBean annotation not required (implicit)

● Transparent create/destroy and scoping of instance

● Type-safe resolution at injection or lookup

● Name-based resolution when used in EL expression

● Life cycle callbacks

● Method interception and decoration

● Event notification

16

Welcome to CDI (managed bean version)

public class Welcome {
 public String buildPhrase(String city) {
 return "Welcome to " + city + "!";
 }
}

● When is a bean recognized?

/META-INF/beans.xml must be in same classpath entry

17

Welcome to CDI (session bean version)

public
@Stateless
class WelcomeBean implements Welcome {
 public String buildPhrase(String city) {
 return "Welcome to " + city + "!";
 }
}

18

A simple client: field injection

public class Greeter {
 @Inject Welcome welcome;

 public void welcome() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

@Current annotation implied

19

A simple client: constructor injection

public class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

Designates the constructor
CDI should invoke

20

A simple client: initializer injection

public class Greeter {
 Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

Designates the initializer
method CDI should invoke

21

Multiple implementations

● Two scenarios:
● Multiple implementations of same interface
● One implementation extends another

public class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

● Which implementation should be selected for injection?

22

Qualifier

An annotation associated with a type that is satisfied by
some implementations of the type, but not necessarily by
others.

Used to resolve a implementation variant of an API at an
injection or lookup point.

23

Defining a qualifier

● A qualifier is an annotation
public
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Translating {}

24

Qualifying an implementation

● Add qualifier annotation to make type more specific
public
@Translating
class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

● Resolves ambiguity at injection point
● There can never been an ambiguity when resolving!

25

Using a specific implementation

● Must request to use qualified implementation explicitly
● Otherwise you get unqualified implementation

public class Greeter {
 Welcome welcome;

 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

No reference to implementation class!

26

Alternative bean

● Swap replacement implementation per deployment

● Replaces bean and its producer methods and fields

● Disabled by default
● Must be activated in /META-INF/beans.xml

Put simply: an override

27

Defining an alternative

public
@Alternative
@Specializes
class TranslatingWelcome extends Welcome {

 @Inject GoogleTranslator translator;

 public String buildPhrase(String city) {
 return translator.translate(
 "Welcome to " + city + "!");
 }
}

28

Substituting the alternative

● Implementation activated using deployment-specific
/META-INF/beans.xml resource

<beans>
 <alternatives>
 <class>com.acme.TranslatingWelcome</class>
 </alternatives>
</beans>

● Could also enable alternative by introducing and
activating an intermediate annotation

29

Assigning a bean name

public
@Named("greeter")
class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

Same as default name when
no annotation value specified

30

Assigning a bean name

public
@Named
class Greeter {
 Welcome welcome;

 @Inject
 public Greeter(Welcome welcome) {
 this.welcome = welcome
 }

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase("Mountain View"));
 }
}

31

Collapsing layers

● Use the bean directly in the JSF view
<h:form>
 <h:commandButton value="Welcome visitors"
 action="#{greeter.welcomeVisitors}"/>
</h:form>

● But we still need the bean to be stored in a scope

32

A stateful bean

● Declare bean to be saved for duration of request
public
@RequestScoped
@Named("greeter")
class Greeter {
 Welcome welcome;
 private String city;

 @Inject public Greeter(Welcome welcome) {
 this.welcome = welcome
 }

 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

33

Collapsing layers with state management

● Now it’s possible for bean to hold state
<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors"
 action="#{greeter.welcomeVisitors}"/>
</h:form>

● Satisfies initial goal of integrating JSF and EJB
● Except in this case, it extends to plain managed beans

34

Scope types and contexts

● Absence of scope - @Dependent

● Bound to life cycle of bean holding reference to it

● Servlet scopes
● @ApplicationScoped

● @RequestScoped

● @SessionScoped

● JSF-specific scope
● @ConversationScoped

● Custom scopes
● Define scope type annotation
● Implement context API

35

Scope transparency

● Scopes are not visible to client
● No coupling between scope and use of type
● Scoped beans are proxied for thread safety

36

Scoping a collaborating bean

public
@SessionScoped
class Profile {
 private Identity identity;

 public void register() {
 identity = ...;
 }

 public Identity getIdentity() {
 return identity;
 }
}

37

Collaboration between stateful beans

public
@RequestScoped @Named
class Greeter {
 Welcome welcome;
 private String city;

 @Inject
 public Greeter(Welcome welcome, Profile profile) {
 this.welcome = welcome
 }

 ...

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase(profile.getIdentity(), city));
 }
}

No awareness of scope

38

Conversation context

● Request <= Conversation << Session

●

● Boundaries demarcated by application

● Optimistic transaction
● Conversation-scoped persistence context
● No fear of exceptions on lazy fetch operations

39

Controlling the conversation

public
@ConversationScoped
class BookingAgent {

 @Inject @BookingDatabase EntityManager em;
 @Inject Conversation conversation;

 private Hotel selectedHotel;
 private Booking booking;

 public void select(Hotel hotel) {
 selectedHotel = em.find(Hotel.class, hotel.getId());
 conversation.begin();
 }

 ...

40

Controlling the conversation

 ...

 public boolean confirm() {
 if (!isValid()) {
 return false;
 }

 em.persist(booking);
 conversation.end();
 return true;
 }
}

41

Producer method

A method whose return value is a source of injectable
objects.

Used for:
● Types which you cannot modify
● Runtime selection of a bean instance
● When you need to do extra and/or conditional setup of a

bean instance

● Roughly equivalent to Seam’s @Factory annotation

42

Producer method examples

@Produces
public PaymentProcessor getPaymentProcessor(
 @Synchronous PaymentProcessor sync,
 @Asynchronous PaymentProcessor async) {
 return isSynchronous() ? sync : async;
}

@Produces @SessionScoped @WishList
public List<Product> getWishList() { ... }

43

Disposal method

● Used for cleaning up after a producer method
● Matched using type-safe resolution algorithm

● Called when produced bean goes out of scope
public class UserRepositoryManager {

 @Produces @UserRepository
 EntityManager create(EntityManagerFactory emf) {
 return emf.createEntityManager();
 }

 void close(@Disposes @UserRepository EntityManager em) {
 em.close();
 }
}

44

Bridging Java EE resources

● Use producer field to set up Java EE resource for type-
safe resolution

public
@Stateless
class UserEntityManagerFactory {
 @Produces @UserDatabase
 @PersistenceUnit(unitName = "userDatabase")
 EntityManagerFactory emf;
}

public
@Stateless
class PricesTopic {
 @Produces @Prices
 @Resource(name = "java:global/env/jms/Prices")
 Topic pricesTopic;
}

Java EE 6 global JNDI name

Java EE resource annotations

45

Injecting resource in type-safe way

● String-based resource names are hidden
public class UserManager {
 @Inject @UserDatabase EntityManagerFactory emf;
 ...
}

public class StockDisplay {
 @Inject @Prices Topic pricesTopic;
 ...
}

46

Promoting state

● Producer methods can be used to promote state of a
bean as an injectable object

public
@RequestScoped
class Profile {
 private Identity identity;

 public void register() {
 identity = ...;
 }

 @Produces @SessionScoped
 public Identity getIdentity() {
 return identity;
 }
}

Could also declare
qualifiers and/or EL name

47

Using promoted state

public
@RequestScoped @Named
class Greeter {
 Welcome welcome;
 private String city;

 @Inject
 public Greeter(Welcome welcome, Identity identity) {
 this.welcome = welcome
 }

 ...

 public void welcomeVisitors() {
 System.out.println(
 welcome.buildPhrase(identity, city));
 }
}

No awareness of scope

48

Rethinking interceptors

● Interceptors bound directly to component in Java EE 5
● @Interceptors annotation on bean type

● What’s the problem?
● Should not be coupled to implementation

● Requires level of indirection

● Should be deployment-specific
● Tests vs production
● Opt-in best strategy for enabling

● Ordering should be defined centrally

49

Interceptor wiring in JSR-299 (1)

● Define an interceptor binding type
public
@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Secure {}

50

Interceptor wiring in JSR-299 (2)

● Marking the interceptor implementation
public
@Secure
@Interceptor
class SecurityInterceptor {

 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx)
 throws Exception {
 // enforce security
 ctx.proceed();
 }

}

51

Interceptor wiring in JSR-299 (3)

● Applying interceptor to class with proper semantics
public
@Secure
class AccountManager {

 public boolean transferFunds(Account a, Account b) {
 ...
 }

}

52

Interceptor wiring in JSR-299 (4)

● Applying interceptor to method with proper semantics
public class AccountManager {

 public
 @Secure
 boolean transferFunds(Account a, Account b) {
 ...
 }

}

53

Multiple interceptors

● Application developer only worries about relevance
public
@Transactional
class AccountManager {

 public
 @Secure
 boolean transferFunds(Account a, Account b) {
 ...
 }

}

54

Enabling and ordering interceptors

● Interceptors referenced by binding type

● Specify binding type in /META-INF/beans.xml to activate
<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

Interceptors applied in order listed

55

Composite interceptor bindings

● Interceptor binding types can be meta-annotations
public
@Secure
@Transactional
@InterceptorBinding
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessOperation {}

Order does not matter

56

Multiple interceptors (but you won’t know it)

● Interceptors inherited from composite binding types
public
@BusinessOperation
class AccountManager {

 public boolean transferFunds(Account a, Account b) {
 ...
 }

}

57

Wrap up annotations using stereotypes

● Common architectural patterns – recurring roles

● A stereotype packages:
● A default scope
● A set of interceptor bindings
● The ability to that beans are named
● The ability to specify that beans are alternatives

58

Annotation jam

● Without stereotypes, annotations pile up
public
@Secure
@Transactional
@RequestScoped
@Named
class AccountManager {

 public boolean transferFunds(Account a, Account b) {
 ...
 }

}

59

Defining a stereotype

● Stereotypes are annotations that group annotations
public
@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
@interface BusinessComponent {}

60

Using a stereotype

● Stereotypes give a clear picture, keep things simple
public
@BusinessComponent
class AccountManager {

 public boolean transferFunds(Account a, Account b) {
 ...
 }

}

61

Events

● Completely decouples action and reactions

● Observers can use selectors to tune which event
notifications are received

● Events can be observed immediately, at end of
transaction or asynchronously

62

Firing an event

public class GroundController {
 @Inject @Landing Event<Flight> flightLanding;

 public void clearForLanding(String flightNum) {
 flightLanding.fire(new Flight(flightNum));
 }
}

Event instance with
type-safe payload

63

An event observer

public class GateServices {
 public void onIncomingFlight(
 @Observes @Landing Flight flight,
 Greeter greeter,
 CateringService cateringService) {
 Gate gate = ...;
 flight.setGate(gate);
 cateringService.dispatch(gate);
 greeter.welcomeVisitors();
 }
}

Takes event API type with
additional binding type

Additional parameters are
injected by the container

64

Summary

● JSR-299 satisfies original goal to integrate JSF and EJB

● Managed bean specification emerged from JSR-299

● More problems needed to be solved
● Robust dependency injection model
● Further loose-coupling with events
● Extensive SPI to integrate third-party with Java EE

● JSR-299 offers loose coupling with strong typingstrong typing

65

JSR-299 status

● Conflict with JSR-330 resolved

● Proposed final draft published

● TCK nearly complete

● Send feedback to jsr-299-comments@jcp.org

● http://jcp.org/en/jsr/detail?id=299

66

Web Beans

● JSR-299 reference implementation

● Developed by Red Hat and community

● Feature complete (for second public draft)
● Look for CR1 ~ JBoss World 2009

● http://seamframework.org/Download

67

TITLE SLIDE: HEADLINE

Presenter

name
Title, Red Hat
Date

Q & A

Dan Allen
Senior Software Engineer, RedHat
August 18, 2009

http://in.relation.to/Bloggers/Dan
http://seamframework.org/WebBeans

