
Pete Muir
JBoss, a Division of Red Hat

Web Beans, the RI of 
JSR-299



Road Map

Background
Concepts
Demo
Status



Java EE 6
• The EE 6 web profile removes most of the “cruft” that has 

developed over the years 
– mainly the totally useless stuff like web services, EJB 2 entity beans, etc 
– some useful stuff like JMS is also missing, but vendors can include it if 

they like 

• EJB 3.1 - a whole bunch of cool new functionality! 
• JPA 2.0 - typesafe criteria query API, many more O/R 

mapping options 
• JSF 2.0 - don’t need to say much more!
• Bean Validation 1.0 - annotation-based validation API 
• Servlet 3.0 - async support, better support for 

frameworks 
• Standard global JNDI names 



Goals
• JSR-299 defines a unifying dependency 
injection and contextual lifecycle model for 
Java EE 6 
– a completely new, richer dependency 

management model 
– designed for use with stateful objects 
– integrates the “web” and “transactional” tiers 
–makes it much easier to build applications 

using JSF and EJB together 
– includes a complete SPI allowing third-party 

frameworks to integrate cleanly in the EE 6 
environment 



What can be injected?
• Pre-defined by the specification: 
– (Almost) any Java class 
– EJB session beans 
–Objects returned by producer methods 
– Java EE resources (Datasources, JMS topics/

queues, etc) 
– Persistence contexts (JPA EntityManager) 
–Web service references 
– Remote EJBs references 

• Plus anything else you can think of! 



Loose coupling
• Events, interceptors and decorators 
enhance the loose-coupling that is inherent 
in this model:
– event notifications decouple event producers 

from event consumers
– interceptors decouple technical concerns from 

business logic
– decorators allow business concerns to be 

compartmentalized



Going beyond the spec
•Web Beans will provide extra integrations
– Tomcat/Jetty support
–Wicket support
– ???

• and features which can be used in any 
JSR-299 environment
– jBPM integration
– log injection (choose between log4j and jlr, 

parameter interpolation
– Seam2 bridge
– Spring bridge



Seam 3?
•Use the JSR-299 core
• Provide a development environment
– JBoss Tools
– Seam-gen (command line tool)

• include a set of modules for any container 
which includes JSR-299
– Seam Security
– Reporting (Excel/PDF)
–Mail



Road Map

Background
Concepts
Demo
Status



Essential ingrediants
•API types
• Binding annotations
• Scope 
•Deployment type 
•A name (optional)
• Interceptor bindings
• The implementation



Simple Example

Any Java Bean can use 
these services

public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

@Stateless
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

So can EJBs



Simple Example

public class Printer { 

   @Current Hello hello; 

   public void hello() { 
      System.out.println( hello.hello("world") ); 
   } 
}

@Current is the default 
(built in) binding type



Constructor injection

public class Printer { 
   private Hello hello; 

   @Initializer
   public Printer(Hello hello) { this.hello=hello; } 

   public void hello() { 
      System.out.println( hello.hello("world") ); 
   } 
} Constructors are injected by default; 

@Current is the default binding type

Mark the constructor to be called by 
the container @Initializer



Web Bean Names

@Named("hello") 
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

By default not available through EL.

@Named 
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

If no name is specified, then a 
default name is used. Both these 
beans have the same name



JSF Page

<h:commandButton value=”Say Hello” 
                 action=”#{hello.hello}”/>

Calling an action on a bean 
through EL



Binding Types
•A binding type is an annotation that lets a 
client choose between multiple 
implementations of an API at runtime
– Binding types replace lookup via string-based 

names 
– @Current is the default binding type



Define a binding type

public 
@BindingType
@Retention(RUNTIME) 
@Target({TYPE, METHOD, FIELD, PARAMETER}) 
@interface Casual {}

Creating a binding type is 
really easy!



Using a binding type

@Casual 
public class Hi extends Hello { 
   public String hello(String name) { 
      return "hi" + name; 
   } 
}

We also specify the @Casual binding 
type. If no binding type is specified on 
a bean, @Current is assumed



Using a binding type

public class Printer { 
   @Casual Hello hello;
   public void hello() { 
      System.out.println( hello.hello("JBoss") ); 
   } 
}

Here we inject the Hello 
bean, and require an 
implementation which is 
bound to @Casual



Deployment Types
•A deployment type is an annotation that 
identifies a deployment scenario
–Deployment types may be enabled or disabled, 

allowing whole sets of beans to be easily 
enabled or disabled at deployment time
–Deployment types have a precedence, allowing 

different implementations of an API to be 
chosen
–Deployment types replace verbose XML 

configuration documents
•Default deployment type: Production



Create a deployment type

public 
@DeploymentType 
@Retention(RUNTIME) 
@Target({TYPE, METHOD}) 
@interface Espanol {}



Using a deployment type

@Espanol 
public class Hola extends Hello { 
   
   public String hello(String name) { 
      return "hola " + name; 
   }
 
}

Same API, different 
implementation



Enabling deployment types

<Beans>
  <Deploy> 
    <Standard /> 
    <Production> 
    <i8ln:Espanol> 
  </Deploy> 
</Beans>

A strongly ordered list of enabled 
deployment types. Notice how everything 
is an annotation and so typesafe!

Only Web Bean implementations which have enabled 
deployment types will be deployed to the container



Scopes and Contexts
• Extensible context model
–A scope type is an annotation, can write your 

own context implementation and scope type 
annotation

•Dependent scope, @Dependent
• Built-in scopes: 
–Any servlet - @ApplicationScoped, 

@RequestScoped, @SessionScoped 
– JSF requests - @ConversationScoped 

•Custom scopes



Scopes

@SessionScoped
public class Login { 
   private User user; 
   public void login() { 
      user = ...; 
   } 
   public User getUser() { return user; } 
}

Session scoped



Scopes

public class Printer {

   @Current Hello hello; 
   @Current Login login; 

   public void hello() { 
      System.out.println( 
         hello.hello( login.getUser().getName() ) ); 
   } 
}

No coupling between scope 
and use of implementation



Conversation context
@ConversationScoped
public class ChangePassword { 
   @UserDatabase EntityManager em; 
   @Current Conversation conversation;
   private User user;
   public User getUser(String userName) { 
      conversation.begin(); 
      user = em.find(User.class, userName); 
   } 
   public User setPassword(String password) { 
      user.setPassword(password); 
      conversation.end(); 
   } 
}

Conversation is 
demarcated by the 
application

Conversation has the same 
semantics as in Seam



Producer methods
• Producer methods allow control over the 
production of a Web Bean where:
– the objects to be injected are not required to 

be instances of Web Beans
– the concrete type of the objects to be injected 

may vary at runtime
– the objects require some custom initialization 

that is not performed by the Web Bean 
constructor 



Producer methods

@SessionScoped 
public class Login { 
   private User user; 
   public void login() { 
      user = ...; 
   } 
   
   @Produces
   User getUser() { return user; } 
}



Producer methods

@SessionScoped 
public class Login { 
   private User user;
   
   @Produces @RequestScoped @LoggedIn
   User getUser() { return user; } 

   @Produces
   String getWelcomeMessage(@Current Hello hello) { 
      return hello.hello(user);
   }
}

Producer method can a 
scope (otherwise inherited 
from the declaring 
component)

Producer method can have 
a binding type

You can inject parameters



Producer methods

public class Printer { 
   @Current Hello hello; 
   @Current User user; 
   public void hello() { 
      System.out.println( 
         hello.hello( user.getName() ) ); 
   } 
}

Much better, no 
dependency on Login!



@SessionScoped
public class Login { 

   @Produces @LoggedIn @RequestScoped
   private User user;

   public void login() { 
      user = ...; 
   } 
}

Producer Fields

• Simpler alternative to Producer methods
Similar to outjection 
in Seam



public class UserDatabaseEntityManager {

   @Produces @UserDatabase
   EntityManager create(EntityManagerFactory emf) { 
      return emf.createEntityManager(); 
   }
 
   void close(@Disposes @UserDatabase EntityManager em) { 
   em.close(); 
   } 
} 

Disposal Method

•Clean up after a producer method

Same API type Same binding types



Java EE Resources
•  To inject Java EE resources, persistence contexts, web service 

references, remote EJB references, etc, we use a special kind of 
producer field declaration: 

public class PricesTopic { 
   @Produces @Prices
   @Resource(name="java:global/env/jms/Prices") 
   Topic pricesTopic; 
} 

public class UserDatabasePersistenceContext { 
   @Produces @UserDatabase
   @PersistenceContext
   EntityManager userDatabase; 
} 



Events
Event producers raise events that are then delivered to 

event observers by the Web Bean manager. 
– not only are event producers decoupled from 

observers; observers are completely decoupled 
from producers
– observers can specify a combination of 

"selectors" to narrow the set of event 
notifications they will receive
– observers can be notified immediately, or can 

specify that delivery of the event should be 
delayed until the end of the current transaction 



Event producer

public class Hello {

   @Observable @Casual Event<Greeting> casualHello;

   public void hello(String name) { 
      casualHello.fire( new Greeting("hello " + name) ); 
   } 

}

Inject an instance of Event using @Observable. 
Additional binding types can be specified to 
narrow the event consumers called. API type 
specified as a parameter on Event

“Fire” an event, the 
producer will be 
notified



Event consumer

public class Printer {

   void onHello(@Observes @Casual Greeting greeting,
                @Current User user) { 
      System.out.println(user + “ “ + greeting); 
   } 

}

Observer methods, take the API 
type and additional binding types

Additional parameters can 
be specified and will be 
injected by the container



Specialization
•Allows a bean with a higher precedence 
deployment to completely replace a bean 
with a lower precedence 
– even producer methods, observer methods etc.

@Mock 
@Specializes
public class MockLogin extends Login {
   
   @Produces
   User getUser() { return new DummyUser(); }
}

A @Mock deployment 
type for testing



Road Map

Background
Concepts
Demo
Status



Road Map

Background
Concepts
Demo
Status



JSR-299
• Public Review Draft 2 published
•Currently working on EE6 integration
•Web Beans “Book” (a less formal guide to 
JSR299)
– http://www.seamframework.org/WebBeans

• Send feedback to jsr-299-
comments@jcp.org

http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans
http://www.seamframework.org/WebBeans


Web Beans
• The Reference implementation
– Feature complete preview released in next few 

days
•Download it, try it out, give feedback!
–http://seamframework.org/Download

• Supported in upcoming release:
– JBoss 5.1.CR1
–GlassFish V3 build 46
– Tomcat 6.0.x
– Jetty 6.1.x



Q & A

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org/WebBeans

http://jcp.org/en/jsr/detail?id=299

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
http://www.seamframework.org
http://www.seamframework.org
http://jcp.org/en/jsr/detail?id=299
http://jcp.org/en/jsr/detail?id=299

