
Case Study: 
Big Lots Store Inventory Management

Kunal Bajaj, Mark Hanes, Chris Henson, Keith Naas
Information Technology

Big Lots
Columbus, Ohio 



2

Agenda

� Introduction to Big Lots

� Project Overview

� Application Demo

� Technology Choices

� Technical Patterns

� Conclusions



3

Company Overview
• Fortune 500 retailer founded in 1967

• ~1350 stores across the U.S.

• Closeout deals



4

Case Study Project
� Store technology refresh initiative – “MARS”

− Year 1 – point-of-sale hardware/software

− Year 2 – inventory management software

� Inventory Counts

� Transfers

� Item Inquiry

� Inventory Adjustments

� Trailer Reconciliation

� Vendor Receiving and Returns



5

Project Constraints
� Tight deadlines driven by business needs

� User technology maturity

� Substantial bandwidth limitations from central office to the 
stores

� Need for “offline” support – store must function even if 
disconnected from corporate headquarters (“central office”)



6

Applications Demo



7

Architecture



8

Technical Choices
� Open Source

− Flexibility

− Transparency

− Community support

− Big Lots contribution – SymmetricDS.org

� JBoss (4.0.4)

− Stability

− Industry leading

− Java5

− Customizable stack



9

Technical Choices: Web Stack
• JBoss Seam (1.2)

– Bridges gap between EJB3 
and JSF

– State management
– Security
– Integrates with almost 

everything

• Ajax4JSF (1.1.1) / 
RichFaces (3.0.1)
– Rich user experience
– Integration with 

Seam/JSF

� EJB3 (RC7) / JPA (1.0)

− Industry standard

− Java5

− POJO

� JSF (1.2 RI)

− Industry standard

− Componentized

� Facelets (1.1.12)

− !JSP

− Easily viewable

− Templating



10

Application Architecture - FASE

Action

(POJO)

Service

(EJB / JPA)

Entity

(POJO)

Facelet



11

Technical Patterns Overview

� Infrastructure

� Devices

� Usability

� User Technology Maturity



12

Patterns: Infrastructure
How do we make authorization rules so simple even a  

manager can do it? 

� Use JAAS

� Seam Security supports EL (s:hasRole, s:hasPermission)

− Views

− Components

− Config files 

� Content Organization

− Split between protected/unprotected

− Divided by domain

− Matching view-id pattern simplified



13

Patterns: Infrastructure
How do we consistently implement Conversations?

� Transactional pages

− @Begin

− @End

− FlushModeType.MANUAL

� Cleanup on abandonment?

− @Stateful EJB3 - @Destroy inconsistently invoked

− @Destroy needs to reinitialize @In’s for EJBs & POJOs

� Be aware of:

− Lifecycle of @In-jected components

− Conversation timeouts / synchronous requests



14

Patterns: Devices
How do we support a touch screen monitor?

� Maximize click areas

− Links styled like buttons

− Table cells/rows clickable with 
custom dataTable widget

� Font size and negative space 
reduces fat fingering

� Scrollable modalPanel and 
dataTable



15

Patterns: Devices
How do we support a handheld device with limited 

resources and no keyboard or mouse?

� Screen flow designed for

− Stylus

− Number pad

� Maximize use of JSF components,
Minimize use of JavaScript

� Limit page size & number of components

� Extends .Net WebBrowser component

− Maximizes screen size

− Eliminates multiple clicks

− Activates Barcode Scanner



16

Patterns: Devices
How do we deal with (very) large search results?

� Push “paging” to Service to limit resource usage

� Extend java.util.List and provide accessors to start 

index, page size and total record count.

� Use start index and page size to move the “cursor”

� Custom dataTable and dataPager implementation



17

Patterns: Devices
How do we handle browser specific CSS or JavaScript ?

� Separate files for browser specific behavior, styles

− Dynamically loaded using JSF Function 

− UserAgent identifies browser

� Browser support is now modular

� Browser specific JavaScript is @private (e.g., _myFunc())



18

Patterns Example:  Item Inquiry 

Demo



19

Patterns:  Usability
How do we provide user and developer friendly valid ation?

� Use Hibernate Validator annotations on Entities as well as 
Actions and supplement with inline business logic

� Extend Seam UIDecorate

− Intercept processDecodes(), processUpdates(), 
processValidators()

− Label attribute exposed for use in error messages

� Use Ajax4JSF to re-render

− Labels

− Messages

− Styled input components



20

Patterns:  Usability
How do we incorporate exception handling in a web 

application?

� Common exceptions handled in pages.xml

� Expected runtime exceptions handled in common Actions

� Unexpected exceptions handled in error-page servlet

− JSF lifecycle invalid as soon as exception propagated 
from Java code

− Captures error data 

− Redirect to JSF error page



21

Patterns:  Usability
How do we work around time consuming operations?

� Render page quickly with available data

� Ajax4JSF poll kicks off time consuming operation

− Fetched data merged by Actions and re-rendered

− Refresh friendly



22

Patterns:  Usability
How do we make an Autocomplete work like an 

HTML Select?

� Custom JSF component extends
YUI Autocomplete

− Accepts converters

� Decouple the input value
from the Entity key

− Facets allow customization
of Autocomplete

� Headers

� Footers

� Labels



23

Patterns Example:  Item Inquiry 

Demo



24

Patterns:  Users
How do we forgive a clickaholic / typeaholic?

� Act on most recent event, ignoring all unprocessed priors

� Ajax4JSF eventQueue & requestDelay almost, but not 

quite

� Custom eventQueue widget

− Only handles last event

− Events before delay are discarded

� Prevents

− Multiple clicks 

− Simultaneous events on different widgets



25

Patterns:  Users
How do we forgive transaction abandonment?

� 1st JSF component attaches window.onbeforeunload event

� 2nd JSF support component ignores window.onbeforeunload

(e.g., Save, Next buttons)

� Traps

− Window closing

− Cancel buttons

− Unintended Actions



26

Patterns:  Users
How do we deal with confusing multi-window operatio n?

� window.open()

problematic on touch 
screen

� RichFaces modalPanel

− inline PDFs

− wizards

� Page flow designed to be 
deterministic



27

Wrap Up
� Successfully developed and deployed store inventory 

management applications

− Currently used in 860+ stores nationwide

− Full deployment expected during 2008

� Web development is challenging, but the right technology 
choices can ease the pain



28

For further information …
Links

• www.biglots.com

• www.symmetricds.org

• labs.jboss.com/jbossseam

Email

• Kunal Bajaj – kbajaj01@gmail.com

• Mark Hanes – markhanes@gmail.com

• Chris Henson – chenson@symmetricds.org

• Keith Naas – keithnaas@gmail.com


