

JBoss Seam
 Integration with intent to use

Dan Allen
Software Consultant
Author, Seam in Action

Who am I?Who am I?

Author of Seam in Action

Author of the Seamless JSF series

Committer on the JBoss Seam Project

Software consultant

Linux and open source advocate

http://www.mojavelinux.com

Who am I Who am I reallyreally??

A software developer looking for solutions to
deliver projects on time and on budget

...and who digs

What is JBoss Seam?What is JBoss Seam?

I've overheard some say...

"Seam, that sounds too technical for me."

"Isn't SEAM an acronym for something?"

"Can Seam finish my curtains?"

What is JBoss Seam?What is JBoss Seam?

Let's not start with this question

Let's start with the problem

...then look for a solution

Dan's Top 5 List:Dan's Top 5 List:
Development challengesDevelopment challenges

#5#5 You have a lot of requirements, but not a lot of time

#4 #4 You burn too much time setting up the project

#3#3 You have to integrate many disparate technologies

#2#2 Managing state in a web application is a pain

#1#1 You never get to the fun stuff (Ajax, PDFs, email)

Seam as a solutionSeam as a solution

Let's see how Seam solves our problems

Seam-gen: Seam's project Seam-gen: Seam's project
generatorgenerator

Assembles Ant-based project in minutes

Supports EAR and WAR archive formats

Ready to be imported into an IDE

Officially supports Eclipse and NetBeans

Any IDE that can drive Ant tasks

Can handle deployment to JBoss AS

Incremental hot redeployment for "instant change"

Three build profiles (dev, test, prod)

Why use seam-gen?Why use seam-gen?

Let's you get to work quickly and be productive

Let's you use Seam in its natural environment

Gets you doing the fun stuff sooner

You can always go your own way later

Seam-gen: Seam's code Seam-gen: Seam's code
generatorgenerator

Seam's answer to Ruby on Rails (and Grails)

Can build an entire CRUD application

From a database

From existing Java classes

Can generate code templates

View templates (Facelets)

JPA entity classes

Action components

Integration test cases

Seam-gen: setupSeam-gen: setup

Requirements to setup new project

Seam distribution (includes seam-gen)

JBoss AS >= 4.2.2 installed

Database server (unless using embedded)

Database JDBC driver JAR

Existing tables unless generating schema

Project name and directory

Multilayer livingMultilayer living

Persistence layer

Business layer

Presentation layer

Every web application's got 'em

It's your job to integrate them

The Seam component modelThe Seam component model

Unifies components across layers/technologies

Java Persistence API (JPA) or Hibernate

Enterprise JavaBeans (EJB 3) or plain JavaBeans

JavaServer Faces (JSF)

Unifies contexts across entire application

Java Servlet API (request, session, application)

JSF component tree (page)

Seam (conversation)

jBPM (business process)

Contextual componentsContextual components

Component

Definition of how to
create an object

Managed class
instantiated by Seam

Instances represent
state of system;
typically scoped to
the use-case

Context

Buckets where the
component instances
are stored

Accessible from
anywhere

One way to access
contexts

Contextual means that state matters!

Seam component >Seam component >
JSF managed beanJSF managed bean

Shares same idea of a container-created object

JSF can also store object in stateful scopes

Scope options are limited

Seam component is more capable

Additional scope options

Strung with interceptors

 manages life cycle of instance

 decorates with services (transactions, security, etc)

JSF managed beanJSF managed bean

<managed-bean>
 <managed-bean-name>beerAction</managed-bean-name>
 <managed-bean-class>
 org.connessieur.action.BeerAction
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

faces-config.xml

JavaBean-Seam componentJavaBean-Seam component

@Name("beerAction")
public class BeerAction {
 ...
}

Stored in event context by default

Event context == request scope

Conversational componentConversational component

@Name("beerAction")
@Scope(ScopeType.CONVERSATION)
public class BeerAction {
 ...
}

Seam introduces the conversation context

Supports a single use-case, which may span
multiple pages and actions

EJB 3-Seam componentEJB 3-Seam component

@Stateful
@Name("beerAction")
public class BeerActionBean implements BeerAction {
 ...
}

Instantiated by EJB 3 container then intercepted
by Seam

Stored in conversation context by default

Annotations instead of XMLAnnotations instead of XML

No more XM-hell!

More concise XMLMore concise XML

But if you must...

<component name="beerAction"
 class="org.connessieur.action.BeerAction"/>

Declared in the Seam component descriptor

META-INF/components.xml

BeerAction.component.xml

Looking up a componentLooking up a component

Every component has a name -› beerAction

When name is requested, an instance is created

Instance is stored in a context variable

Several ways to perform lookup

EL value expression -› #{beerAction}

Annotation -› @In("beerAction")

Seam API -› Component.getInstance("beerAction")

Using a componentUsing a component

Capture form data

Bind properties to input fields

Respond to action in user interface

Click a button

Submit a form

Model a sequence of interactions

Demarcate conversation boundaries

Hold state for a conversation

Seam-gen: new-formSeam-gen: new-form

Use new-form command to create stub JSF view

Component name: beerAction

Bean class name: BeerAction

Action method name: save

Page name: editBeer

Artifacts generated

BeerAction.java (under src/action)

editBeer.xhtml (under view)

BeerActionTest.java (under src/test)

Components as action Components as action
listenerslisteners

Component responds to user generated event

button, link, input value change

action triggers method execution on server

Action listener registered using method binding
expression

Binding the action listenerBinding the action listener

<h:form id="beer">
 ...
 <div class="actionButtons">
 <h:commandButton id="save" value="Save"
 action="#{beerAction.save}"/>
 </div>
</h:form>

@Name("beerAction")
public class BeerAction {

 public String save() { ... }
}

editBeer.xhtml

Entity class as a componentEntity class as a component

Central piece in object-relational mapping (ORM)

Transports data to/from database

Also plays central role in Seam application

Shared across the layers

Can serve as a JSF "backing" form bean

Life cycle of entity controlled by ORM

Not managed by Seam like other components

Seam seeds the new instance (prototype)

Defining an entity componentDefining an entity component

@Entity
@Name("beer")
public class Beer implements Serializable {
 protected Long id;
 protected String name;
 ...
 @Id @GeneratedValue
 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String n) { this.name = n; }
 ...
}

Capturing form input in JSFCapturing form input in JSF

Abstraction over HTTP protocol and POST data

Input element bound directly to model property

Uses value binding expression -› #{beer.name}

On submit, JSF will...

read value from POST data -› name

convert and validate value

create new entity class instance -› Beer

assign value to property on model -› setName()

Binding entity to form inputsBinding entity to form inputs

<h:form id="beer">
 <rich:panel>
 <f:facet name="header">Add Beer</f:facet>
 <s:decorate id="nameField"
 template="layout/edit.xhtml">
 <ui:define name="label">Name</ui:define>
 <h:inputText id="name" required="true"
 value="#{beer.name}"/>
 </s:decorate>
 ...
 </rich:panel>
</h:form>

editBeer.xhtml

Seam UI decoratorSeam UI decorator

Builds JSF markup dynamically

Composite view pattern

Adds two implicit context variables

required – as defined on input component

invalid – indicates if input has validation errors

layout/edit.xhtml ties label and validation error
message to input component

Enforcing validationsEnforcing validations

Before submitting form, inputs must be validated

Validations traditionally defined using UI
component tags

<f:validateLength minimum="3" maximum="50"/>

Better to define validations in domain model

Not repeated on every page property is used

Centralized for other layers to access

Hibernate validatorHibernate validator

Criteria defined on property using annotations

@Length(min = 3, max = 50)

@Email

@CreditCardNumber

Seam adapts Hibernate validator to JSF validation

<s:validate/> nested within input component

<s:validateAll> wrapped around all inputs

 used in layout/edit.xhtml

Validations take effect in UI immediately

Only wort is that required="true" still necessary

Model validationsModel validations

@Entity
@Name("beer")
public class Beer implements Serializable {
 ...
 protected String name;

 @Length(min = 3, max = 50)
 public String getName() { return this.name; }
 ...
}

Ready to save?Ready to save?

Test first!

Seam's testing infrastructureSeam's testing infrastructure

Seam provides a test infrastructure for end-to-
end testing

Based on TestNG

Boots an embedded Java EE environment

Most seam-gen commands create a test stub

Instantiate JSF life cycle inside of test case

NonFacesRequest – emulates initial "GET" request

FacesRequest – emulates JSF "postback"

Execute tests using ant test

Defining the expected Defining the expected
behaviorbehavior

public class BeerActionTest extends SeamTest {
 @Test public void testAddBeer() throws Exception {
 new FacesRequest("/editBeer.xhtml") {
 protected void updateModelValues()
 throws Exception {
 setValue("#{beer.name}", "HopDevil");
 }
 protected void invokeApplication()
 throws Exception {
 invokeMethod("#{beerAction.save}");
 }
 }.run();
 }
}

Implementing the behaviorImplementing the behavior

@Name("beerAction")
public class BeerAction {

 protected Beer beer;

 protected EntityManager entityManager;

 public String save() {
 entityManager.persist(beer);
 return "success";
 }
}

BijectionBijection

Similar to dependency injection

container satisfies the needs of components

Bijection occurs on every method invocation

Prefix "bi" implies that it occurs twice

injection is applied before the method is invoked

outjection is applied after the method is invoked

Bijection = Injection + Outjection

Dynamic @In-jectionDynamic @In-jection

@In annotation applied to property of class

Simple case

Seam looks for a context variable matching the
name of the property

assigns value of context variable to property

Additional criteria

customize context variable name and scope

set required=false to ignore missing value

set create=true to create value if not found

@Out-jection: variable export@Out-jection: variable export

@Out annotation applied to property of class

Simple case

Value of property is assigned to a context variable
whose name matches the name of the property

Scope of context variable determined as follows:

use scope of component with same name, if exists

otherwise, use scope of property's component

Additional criteria

customize context variable name and scope

set required=false to ignore null value

What bijection buys youWhat bijection buys you

Simple to wire together objects and tap into
managed services

It's dynamic

Can inject a narrower-scoped component into a
wider-scoped component

 properties are updated to reflect latest state

No manual assignment to make
variables available to the view

Using bijection to implement Using bijection to implement
the behaviorthe behavior

@Name("beerAction")
public class BeerAction {
 @In
 protected Beer beer;

 @In
 protected EntityManager entityManager;

 public String save() {
 entityManager.persist(beer);
 return "success";
 }
}

inject context variables

Using bijection to implement Using bijection to implement
the behaviorthe behavior

@Name("beerAction")
public class BeerAction {
 @In
 protected Beer beer;

 @In
 protected EntityManager;

 public String save() {
 entityManager.persist(beer);
 FacesMessages.instance().add("#{beer.name}");
 return "/home.xhtml";
 }
} issues "redirect after post"

but JSF message is not lost

Where is the EntityManager Where is the EntityManager
defined?defined?

Seam automatically creates a new EntityManager
on demand from JPA persistence unit

Defined in components.xml

XML-based equivalent to @Name

<persistence:managed-persistence-context
 name="entityManager" auto-create="true"
 entity-manager-factory="#{entityManagerFactory}"/>

<persistence:entity-manager-factory
 name="entityManagerFactory"
 persistence-unit-name="connoisseur"/>

What about transactions?What about transactions?

Seam wraps every JSF request in two transactions

...from start of request until after actions are
invoked (Invoke Application phase)

...around the rendering of the response (Render
Response phase)

Works with both JTA and entity transactions

@Transactional marks a method as transactional

Don't need it as long as using JSF life cycle

Is required if you disable Seam global transactions

Context variables on demandContext variables on demand

In component-based frameworks, data is "pulled"
rather than "pushed"

Instance of component is created when name is
requested

What about arbitrary data?

Seam factory component

Provides a way to initialize any context variable
when requested

Pulling down a listPulling down a list

<rich:panel>
 <f:facet name="header">Beers of the world</f:facet>
 <rich:dataTable var="_beer" value="#{beers}"
 rendered="#{not empty beers}">
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{_beer.name}
 </h:column>
 ...
 </rich:dataTable>
</rich:panel>

beerList.xhtml

A context variable factoryA context variable factory

@Name("beerList")
public class BeerList {
 @In
 protected EntityManager entityManager;

 @Factory("beers")
 public List<Beer> getBeers() {
 return entityManager
 .createQuery("select b from Beer b")
 .getResultList();
 }
}

Factory chain reactionFactory chain reaction

@Name("beerList")
public class BeerList {
 @In
 protected EntityManager entityManager;

 @Out
 protected List<Beer> beers;

 @Factory("beers")
 public void loadBeers() {
 beers = entityManager
 .createQuery("select b from Beer b")
 .getResultList();
 }
}

exported after factory method is called

Data model selectionData model selection

JSF UIData components support notion of row
selection

<h:dataTable>

Captured when action is triggered within row

How does it work?

JSF DataModel wraps collection

JSF positions DataModel#getRowData() before calling
action listener

Action listener must have reference to DataModel to
access selected row data :(

Transparent data model Transparent data model
selection with Seamselection with Seam

@Name("beerList")
public class BeerList {
 ...
 @DataModel(scope = ScopeType.PAGE)
 protected List<Beer> beers;

 @DataModelSelection
 protected Beer selectedBeer;

 @Factory("beers")
 public void loadBeers() { beers = ...; }

 public String processSelection() { ... }
}

no direct use of DataModel

"Clickable" lists"Clickable" lists

<rich:dataTable var="_beer" value="#{_beers}"
 rendered="#{_beers.rowCount gt 0}">
 ...
 <h:column>
 <f:facet name="header">Action</f:facet>
 ...
 <h:commandLink action="#{beerList.delete}"
 value="Delete"/>
 </h:column>
</rich:dataTable>

beerList.xhtml

Processing the selected rowProcessing the selected row

@Name("beerList")
public class BeerList {
 ...
 @DataModelSelection
 protected Beer selectedBeer;
 ...
 public String delete() {
 selectedBeer = entityManager
 .find(Beer.class, selectedBeer.getId());
 entityManager.remove(selectedBeer);
 return "/beerList.xhtml";
 }
}

Handing off a selectionHanding off a selection

<rich:dataTable var="_beer" value="#{_beers}"
 rendered="#{_beers.rowCount gt 0}">
 ...
 <h:column>
 <f:facet name="header">Action</f:facet>
 <s:link view="/editBeer.xhtml"
 action="#{beerAction.edit}" value="Edit">
 <f:param name="id" value="#{_beer.id}"/>
 </s:link>
 ...
 </h:column>
</rich:dataTable>

beerList.xhtml

Selecting a row for editingSelecting a row for editing

@Name("beerAction")
public class BeerAction {
 ...
 @In(create = true) protected Beer beer;
 @RequestParameter protected Long id;
 ...
 public String edit() {
 beer = entityManager.find(Beer.class, id);
 return "/editBeer.xhtml";
 }
}

Checking out a recordChecking out a record

Need to track record's state

Create or edit mode

Unique id of record being modified, if edit mode

Lock status

Traditionally done using hidden form fields

Entity must be reloaded from database

Form data must be copied onto entity instance

Persistence contextPersistence context

Reference to retrieved entities

Maintained by persistence manager

In memory cache

Instances are "managed"

Guarantees identity of instances

Performs automatic dirty checking

All that stops working when closed!

Entity instances become "detached"

Extended persistence contextExtended persistence context

Persistence manager stored in conversation

Lives across requests

JSF applies form values to managed entity

Dirty checking ensures update

Automatic optimistic locking

Starting the conversationStarting the conversation

@Name("beerAction")
@Scope(ScopeType.CONVERSATION)
public class BeerAction {
 ...
 @In(create = true) @Out protected Beer beer;
 @RequestParameter protected Long id;
 @Out protected boolean managed;

 @Begin
 public String edit() {
 beer = entityManager.find(Beer.class, id);
 managed = true;
 return "/editBeer.xhtml";
 }
}

Save or update?Save or update?

<h:form id="beer">
 ...
 <div class="actionButtons">
 <h:commandButton action="#{beerAction.save}"
 rendered="#{not managed}"/>
 <h:commandButton action="#{beerAction.update}"
 rendered="#{managed}"/>
 </div>
</h:form>

editBeer.xhtml

Wrapping things upWrapping things up

@Name("beerAction")
@Scope(ScopeType.CONVERSATION)
public class BeerAction {
 ...

 @End
 public String update() {
 managed = false;
 FacesMessages().instance()
 .add("#{beer.name} has been updated.");
 return "/editBeer.xhtml";
 }
}

no explicit update instruction

Multi-record editingMulti-record editing

@Name("beerList")
@Scope(ScopeType.CONVERSATION)
public class BeerList {
 ...
 @Out protected boolean editModeEnabled;

 @Begin
 public void editMode() {
 loadBeers();
 editModeEnabled = true;
 }
 ...
}

load records into
persistence context

Multi-record editingMulti-record editing

<rich:dataTable var="_beer" value="#{beers}">
 <h:column>
 <f:facet name="header">Name</f:facet>
 <h:outputText value="#{_beer.name}"
 rendered="#{not editModeEnabled}"/>
 <h:inputText value="#{_beer.name}" required="true"
 rendered="#{editModeEnabled}"/>
 </h:column>
 ...
</rich:dataTable>

beerList.xhtml

Multi-record editingMulti-record editing

@Name("beerList")
@Scope(ScopeType.CONVERSATION)
public class BeerList {
 ...
 @Out protected boolean editModeEnabled;

 @End
 public void saveChanges() {
 editModeEnabled = false;
 FacesMessages.instance().add("Changes saved");
 return "/beerList.xhtml";
 }
 ...
}

And there's more...And there's more...

Questions?Questions?
I know you've got 'emI know you've got 'em

Now it's your turn to challenge me!

ResourcesResources

Seam 2.0 books

Seam in Action, by Dan Allen

Seam community site

http://seamframework.org

Seam Issue Tracker

http://jira.jboss.org/jira/browse/JBSEAM

Seam links (and lots of them)

http://del.icio.us/seaminaction

Thanks for coming!Thanks for coming!

Dan Allen
 dan.allen@mojavelinux.com
 http://www.mojavelinux.com

